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COMMENT 

On the method of Chan and Lu for Abel's integral 
equation 

R S Anderssen and F R de Hoog 
Division of Mathematics and Statistics, CSIRO, PO Box 1965, Canberra City, ACT 2601, 
Australia 

Received 11 May 1981 

Abstract. For the method proposed recently by Chan and Lu for the inversion of Abel's 
integral equation, we show that (i) under a wide range of circumstances, it yields numerical 
schemes identical with those obtained from the direct discretisation of the standard 
inversion formulae; (ii) although it avoids the explicit numerical differentiation in the 
standard inversion formulae, it does not avoid the numerical difficulties inherent in the 
inversion; and (iii) it is still equivalent mathematically and numerically to a half-differen- 
tiation. 

1. Introduction 

In a recent paper, Chan and Lu (1981) examined the Abel integral equation (their 
equation (3) after the application of the transformation used to derive their equation 
(8)) 

and made the interesting observation that, after some standard manipulations, the 
known inversion formulae due to Abel (cf Lonseth 1977), 

and 

can be rewritten as 

They then used this result and an example to conclude that because it does not involve 
numerical differentiation, the solution ( 3 )  of Abel's integral equation is less susceptible 
to errors in the input data. 
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This approach for constructing numerical schemes for the inversion of Abel's 
equation appears to be new. It is interesting to note however that the Hilbert transform 
of 

A ' ( u )  = 2uS'(u2), A'(u)  = dA/du, S ' (z )  = dS/dz, 

when evaluated at zero, yields 

Such formulae are fundamental in tomography (cf Herman 1980, ch 8) and are usually 
evaluated by applying quadrature to the right-hand side of (4). 

In this note, we show that, though the use of (3) can on occasions have advantages 
over the use of the standard inversion formulae, all are computationally equivalent in 
that (2a), (26) and (3) each correspond to a half-differentiation of the data S ( p ) .  

2. The numerical differentiation implicit in the method of Chan and Lu 

Product integration is invariably used to generate finite difference schemes for the 
evaluation of (2a)  and (2b) .  The idea is to choose an approximation 8 ( p )  for S ( p )  of 
such a form that the resulting approximations 

and 

can be evaluated analytically. Such approximations would include polynomials, 
piecewise polynomials and splines. If the manipulations of Chan and Lu are now 
applied to (5a) ,  it follows that 

This shows that many of the numerical schemes which can be constructed for the 
evaluation of (3), by replacing a ( * )  by suitable approximations 8(.), can be identical 
with those obtained from the direct discretisation of the standard inversion formulae; 
and hence, that (2a),  (2b)  and (3) yield equivalent numerical methods under a wide 
range of circumstances. 

From a direct inspection of (3), it can be seen that the numerical differentiation 
explicit in (2a) and (2b) has not been removed but only transformed to a less explicit 
form. In fact, when u 2  is in the neighbourhood of the origin, the integrand of (3) defines 
a finite difference approximation to the first derivative of S ( p )  at p = q for all q. Thus, if 
the integrand is evaluated at the origin by extrapolation, then a finite difference 
approximation to 6 ' ( p )  at p = q will result. 

This fact is not that surprising when it is observed that (2a), (2b)  and (3) are 
mathematically equivalent, and hence, that (3) must correspond to a half-differen- 
tiation since (2a) and (2b) do (cf Sneddon 1966). 
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Because mathematical equivalence does not imply computational equivalence, we 
examine the computational behaviour of (3) relative to that of ( 2 b )  and hence ( 2 a ) .  
Using standard arguments (cf Anderssen 1976), it can be shown that, if finite difference 
methods with even grid spacing h are used to evaluate either (2a )  or ( 2 b ) ,  then errors in 
S ( p )  are amplified locally by a factor of the order of h-'". In addition, it is well known 
that, for finite difference approximations to the derivative of a function, the cor- 
responding amplification factor is of the order of h-'.  This leads naturally to the 
conclusion that, from a numerical point of view, the inversion of the Abel integral 
equation (1) is as badly posed as a 'half-differentiation'. 

We now confirm that (3) is computationally equivalent to the standard inversion 
formulae ( 2 a )  and (2b)  by showing that the local amplification of errors in S ( p )  is again 
h-'" when (3) is evaluated using general quadrature formulae. In fact, if we take 

4 = Pi,  S ( p k ) = a k ,  P k  = kh,  k = 0, 1, . . . , 
then most quadrature approximations of (3) will take the form (cf Davis and Rabinowitz 
1967) 

U. A = -- 2h-'I2[ f k a j t k  ( ( k + l ) y  - k1I2) - was,], 
77 k = l  

(7) 

where the weights w k  (which can depend on j )  are bounded and independent of h. 
Quadrature formulae based on (6) (or equivalently ( 5 a )  or ( 5 6 ) )  will also have this form 
if a piecewise polynomial approximation to 6 is used. 

3. Numerical performance when the data are observational 

It should be clear from the discussion of D 2 that it is not the mathematical formulation 
of the inversion formulae but the numerical implementation that is important. 
However, for two independent numerical implementations, data can always be chosen 
so that one will perform better than the other. Thus, the numerical comparison of 
methods must be done with care to ensure that one is seeing the true character of their 
computational performance and not some data-dependent pathology. 

To examine the question of numerical performance further, let us consider ( 7 )  when 
applied to observational data of the form 

I 

S k  = S k  f & k ,  k = 0 , 1 , 2  , . . . ,  
where the 8 k  = S ( p k )  denote the exact data at the grid point P k ,  and the &k are identically 
and independently distributed random variables with mean zero and variance (T', 

If f i j  denotes the result of applying (7) to this data, it follows that 

and hence 

E(fi1) = f i j  
and 
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To illustrate the wide range of values which var( fij) can have, we consider the following 
three examples. 

R S Anderssen and F R de Hoog 

(i) Backward Euler quadrature with 

Wk = 1, k =  1 , 2 , .  . . , 
- "I2) 

z ( (k+U1I2  
k = l  k 

v a r ( a )  = (1.62)4g2/7r2h. 

(ii) Trapezoidal quadrature, when the value 

S ( p j  + u 2 ) - S ( p j )  lim 
U +o U* 

is estimated by linear extrapolation. In this case, 

(k + 1)'I2 - (k - 1)'12 w -1 
0 - 2 + z  k = l  ( 2k 

w1= 1 . 5 + J S ,  

Wk = [(k + 1)'12 - (k - 1)1'2]/{2[(k + 1)'I2- k'12]}, 

var(fij) = (5.60)4a2/7r2h. 

k = 2 , 3 ,  . . . ,  

(iii) Product integration based on ( 4 a ) ,  when S ( p )  is approximated by a piecewise 
linear interpolating polynomial. Then 

w, = 2, 

Wk = 2 k [ - ( k  + 1)112 + 2k 1'2 - (k - 1)'12]/[(k + 1)'12 - k'12], 

var(a . )  = (5.43)4m2/7r2h. 

However, the choice of the quadrature scheme to use should not be based solely on 
the size of v a r ( q ) .  It is also necessary to take into account the behaviour of the 
discretisation error qi - U,. Under suitable regularity assumptions abcut S ( p ) ,  this will 
decrease like h112 for (i) and h312 for (ii) and (iii). Unfortunately, the type of regularity 
conditions involved do not hold for certain applications such as axial tomography, since 
U ( q )  can contain jump discontinuities. In such circumstances, it is probably best to 
choose schemes with small variance; but a detailed discussion is beyond the scope of this 
short note. 

4. Conclusions 

In conclusion, we make the following observation: all the above results are a 
consequence of the general result that computational difficulties associated with the 
inversion of improperly posed problems such as Abel's equation cannot be removed by 
simply manipulating the problem mathematically into an alternative form. Stabilisa- 
tion can only be obtained through the introduction of additional structure (e.g. 
regularisation). For Abel's equation such methods have been discussed in some detail 
by Anderssen (1976), Anderssen and Jakeman (1975) and Wahba (1977). 
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Note 1. In some applications, S ( p )  will be given at the points p k  = (kh)*  rather than kh, 
k = 0, 1,2,  . . . . To analyse such situations, it will be necessary to modify the quadra- 
ture formula (7). However, the basic conclusions made above will remain unchanged, 

Note 2. In the above, we have glossed over the regularity conditions (e.g. S ( o 0 )  = 0) 
which ensure that all the above steps are valid. Full details can be found in standard 
texts on analysis and integral equations. In addition, we have not worried about 
conditions which ensure that the summation in (7) exists, since, in applications, S (  p )  = 0 
for suitably large p .  
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